【解:题目等价于f=1在(0,+∞)上有且只有两个解。】
【当00,所以x-a/l
a>0,所以f’>0,所以f=1至少有一个解,所以a>1。】
【此时l
a>0,a/l
a>0,将f定义域改为[0,+∞),此时此时f=0。】
【……】
【令g=x-1-l
x,x∈(0,+∞),g’=1-0-1/x=/x。】
【所以g≥g=1-1-l
1=0。】
【由a>1得到l
a>0,得到:g(l
a)≥0。】
【由伯努力不等式得……】
【由f单调性可知:f=1,在(0,a/l
a)和(a/l
a,+∞)上各有一解。]
【综上,a取值范围为(1,e)∪(e,+∞)。】
……
打完收工,就是如此的简单。
该题的重点,无非是在于求导,同构,极值点偏移等知识点的应用。
在这里,林北还用到了伯努利不等式,这个想必大家也都知道吧?
伯努利不等式,又叫贝努利不等式,是针对幂函数到一次函数的放缩。
平日或许用的很少。
但在高考压轴题,尤其是第二问中,能用到的机会非常之多。
当然,也不是非要用伯努利不等式,才能做出这张卷子压轴的第二问。
实际上,方法还有许多。
只要你对同构,指数相切放缩和隐零点有足够了解,通过画图便可一目了然。
除此之外。
还可以使用洛必达法则。
不过高中貌似不学习洛必达法则,这属于大学的知识,所以一般老师不让用,除非自己证明,不然大概率会扣分。
总而言之。
这导数压轴题,对一般人来说很难。
可到了林北的高度,这难么?
黑板上的钟表指向2:28分,距离上一题结束,仅过去五分钟而已。
导数压轴,五分钟搞定。
不知……大家有没有见到过?
此等手速,莫说单身1000年,即便单身10000年,怕也是望尘莫及啊!
“呼,这卷子真索然无味!”
林北轻呼口气,眉宇间一阵寂寞。
实在是这些题目都太简单了,即便是压轴题,都不需要他过多思考。
毫不夸张的说,限制他考试速度的只有手速,不然完全可以更快。
本来他对这次考试,可为期待满满。
毕竟这是他重生后参加的第一次正规考试,想借此检验一下自己实力。
可现在,心里头微有些失望。
“这届出题人不太行啊?”
“上午语文题简单也就算了,现在数学题也如此,感觉有糊弄人的意思。”
“别告诉我,这是在打发小学生?”
“ヽノ!”
林北双手一摊,将目光投向试卷的最后两道题,也就是选考题。
选考题。
顾名思义,选做一道便可以。