关灯 特大 直达底部
亲,双击屏幕即可自动滚动
正文 第168章 微商的逆运算
在姜子淳用“无穷小”解决导数问题的时候,远在大魏的一位年轻人也陷入了深思。



这人便是讨论小组的那位夏天同学了。



不过虽然是夏天提出了用无穷小来解决导数问题的设想,但是从幻境出来之后,夏天却没有立即按照这个想法进行推导,因为他突然想到了一个更加有意思的事情,那就是——如果将整个计算过程翻转过来会怎么样?



按照姜子淳所言,她发现的那个规律是用来求曲线的斜率的,但是如果将这个计算过程翻转过来,也就是对多项式进行升幂,那又会如何?



更关键的是,这个过程又代表着什么样的意义?



其实,夏天也不是非得找出这个计算过程的实际意义,只不过如果只是单纯的计算,而没有解决什么具体问题的话,那很可能这个计算过程根本就流传不下去,也推广不开。



毕竟如果想要计算过程无意义的话,那随便一个人都可以想出很多很多的范例。



比如有一类很常见的数学题,将一个数字通过一系列复杂的加减乘除运算,变为了另一个数字。



这类题目就只是单纯的用来考察学生的计算能力的,而没有其他别的作用。相应的,其中的计算过程,比如四则运算的符号和顺序也可以随意的变来变去,没有人会在意其中用到了几个加法,几个减法或者乘法,也不会有人想着将其中的顺序给固定下去,因为这确实没有任何意义。



也没有那个必要!



此时,夏天看着纸上书写的那两个计算式,陷入了深思,不过想了半晌,他却也没有想出来个所以然来。



“y等于x的平方,y等于x立方的三分之一……”



“升幂。这到底代表着什么?什么情况下才会用到这个升幂?”



想着想着,夏天突然拿起笔给第二个式子后面添加了一个常数。



因为就在这时,他突然意识到自己的逆运算表示的不太完整。



“这样才对嘛!按照子淳姑娘的说法,不带未知数的的话,会直接将其计算为0的,我这个反了过来,应该添上一个常数项才对!”



不过添上了常数项之后,夏天还是没能察觉出自己这么计算有什么具体的意义。



“算了,暂时不想了,我先把子淳姑娘发现的规律解释清楚了再说。说不定两者之间还有什么联系呢。”



……



第二天的讨论会议上,因为夏天的提醒,小组成员几乎同时都拿出了类似的解决方案,即通过斜率的几何意义,再加上无穷小来推导出关于斜率的方程。



甚至,还有人据此推断出了其他几种函数的计算结果。比如对数函数,三角函数等等。



一时间,整个小组沦为了大型智力比拼现场。



你推出了余弦函数的,那我就推出正弦函数的,正切函数的,而另外一个人呢,他就推出反函数的,甚至,还有人将其中的四则运算规律给搞出来了。



总之,讨论小组里是人才济济,你方唱罢我方唱!你来我往,好不乐乎?



最后呢,这种计算方式的发现人,也就是姜子淳同学做出了总结:



“现在的话,我们已经找到了这种计算方式的几何意义。即通过无穷小量来计算曲线的斜率。而且有了各位的帮助,我们也将常见的函数规律都给找了出来。



在这里,我要谢谢大家!感谢大家对于我们小组的肯定以及支持!



那么现在,我们应该将这种计算方法叫做什么呢?总不能每次都叫做这种方法、那种方法吧!”



闻言,大家默契一笑,随后纷纷给上了提议。



有人建议叫做“求斜率法,或者求斜法”,有人建议叫“求切法”,甚至还有人叫做“求微法”……



一时间,众说纷纭。



最后,大家一致通过投票决定:计算结果就叫做“微商”,而那个计算过程呢,就叫做“求微商”。



“微商微商,微小量之商!



确实贴切!而

本章未完,点击下一页继续阅读

(1/4)
  • 加入收藏
  • 友情链接