直太让人感到震惊了!
可以说,只要林宇的证明过程能让所有人满意。
那么,不论他到底有没有完整的破解出纳维-斯托克斯方程,他都可以在纳维-斯托克斯方程这座至高殿堂上,刻上属于他的名字!
甚至,他将会在数学界,永远留下属于他的浓墨重彩的一笔!
“你说他会用什么方法证明?”
坐下后,德利涅扭头看向旁边的法尔延斯,问道。
“虽然我不清楚他的数学风格以及喜欢运用的数学方法,但是,我觉得以他那堪比超算的大脑,应该会用筛法。”法尔延斯思索片刻后,眯着眼睛说道。
筛法,是求不超过自然数n(n>1)的所有质数的一种方法,是古希腊的埃拉托斯特尼发明的,所以又称埃拉托斯特尼筛法。
而后来,随着越来越多的数学家从筛法中获取灵感。
筛法的种类也是越来越多,比如三大筛法、广义筛选法等等。
像纳维-斯托克斯方程这种问题,通常有 2 个出路,一是数学方法,二是计算机计算。
不过,现在数学上,还没有找到好的方法,如果是计算机计算的话,那么难点就是计算量太大,
因为,这就好像是假设把一个边长为 1000 的流体,分为边长为 1 的小立方体表示。
这样一来,就会有 10003 = 10 亿个小立方体。
要计算每个立方体之间的相互黏着作用力,这相当于是一个 n 体问题, n = 10 亿。
所以,把纳维-斯托克斯方程看作是数学问题,其实是不公平的。
因为这根本无法用数学方法来解,数学方法是绣花的精细活,不是干这种粗犷的计算量事的。
所以,对于林宇而言,他想要成功推导出纳维-斯托克斯方程的话,那就只能凭借筛法和自己堪比超脑的计算量去推导。
而林宇也正是这样想的。
紫笔文学