关灯 特大 直达底部
亲,双击屏幕即可自动滚动
正文 第三百六十章 意向达成
学过生物的同学应该都知道。



氮气这种物质非常稳定。



因为成键原子形成多重键,必须有而且只能有一个σ键,但可以有一个或者两个π键。



一般σ键由于是“头碰头”形式成键。



电子云重叠电子云重叠程度大,比较稳定。



而π键是“肩并肩”形式成键。



电子云重叠程度小,不稳定。



比如烯烃在与br2等发生加成反应时,就是碳碳双键c=c中的π键断裂,而σ键不断裂。



这样才能只加入溴原子而碳链不会断裂。



当炔烃与br2加成时,由于炔烃中c≡c的键长比c=c键长短,c≡c中的π键就比c=c中π键要牢固一些,加成时断裂就难一些。



因此反应速率明显比烯烃要慢。



而n≡n键长更短,结果导致π键的重叠程度反而比σ键还要大,π键就比σ键牢固了。



因而n≡n中的π键很难被加成,这就导致n2化学性质极其稳定。



要想使n2反应就必须在高温或有催化剂的情况下使三重键同时断裂才能反应。



同样的道理。



部分含氮化合物的化学性质也非常稳定。



例如丙烯腈以及一些氮氧化合物。



根据兔子们的研究......



这类相对稳定的化合物经常出现在y粒子的生成反应末端,但却总是莫名其妙的就被焚毁了。



丙烯腈这种不耐高温的化合物还好说,遇高温分解了嘛。



但是还有部分氮氧化合物分子的耐热性很高,尤其是在有y粒子生成的情况下,理论上应该是可以保持很久稳定状态的。



因此这种情况便成为了一个谜团,并且足足持续了有小半年。



直到不久前,王蔷团队才发现了它的咪咪:



那就是生成y粒子的冷凝微生物,自身具备一定的储能效果!



一簇地脉焰中的冷凝微生物数量并不多,但它却可以储存大约七千万焦耳的能量。



在极短的接触时间和接触面内。



这种能量足以让那些小型的氮氧化合物分子瞬间焚毁。



当然了。



七千万焦耳在现实生活中那就不算啥了。



物理稍微好点的同学应该都记得。



1千瓦时等于3600000焦耳,因此七千万焦耳的储能差不多可以发19度电吧。



但别忘了,一簇地脉焰才多大?



其中冷凝微生物的体积才多少?



有个很简单的道理。



那就是如果冷凝微生物的体积太大,别说兔子们了。



它早就被大莫界的修行者们发现了。



记忆力好的童靴应该还记得。



商贸团在刚到紫琼城的时候,还用短时版的地脉焰坑过几家黑心商家。



所以从很早的时候起,兔子们便掌握了人工繁育冷凝微生物的技术。



紫琼坊市那时候冷凝微生物的寿命上限是168个小时,如今兔子们已经成功突破到了360个小时,也就是十五天。



实话实说。



十五天的寿命其实没有太大的本土运用价值,因此相关技术目前依旧在进一步的加速研究中。



属于一个前瞻性研究。



但在特定情况下......



冷凝微生物的意义就非同一般了。



其中就包括了杨正初即将面临的元婴大劫。



按照兔子们的计划。

本章未完,点击下一页继续阅读

(1/3)
  • 加入收藏
  • 友情链接